1.下载ElasticSearch 6.4.1安装包 下载地址:
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.1.tar.gz
2.解压压缩包
[root@localhost ElasticSearch]# tar -zxvf elasticsearch-6.4.1.tar.gz
3.启动ElasticSearch
[root@localhost bin]# ./elasticsearch
以后台方式启动
[root@localhost bin]# ./elasticsearch -d
TIPS:
[root@localhost bin]# ./elasticsearch [2018-09-19T19:46:09,817][WARN ][o.e.b.ElasticsearchUncaughtExceptionHandler] [] uncaught exception in thread [main] org.elasticsearch.bootstrap.StartupException: java.lang.RuntimeException: can not run elasticsearch as root at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:140) ~[elasticsearch-6.4.1.jar:6.4.1] at org.elasticsearch.bootstrap.Elasticsearch.execute(Elasticsearch.java:127) ~[elasticsearch-6.4.1.jar:6.4.1] at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86) ~[elasticsearch-6.4.1.jar:6.4.1] at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:124) ~[elasticsearch-cli-6.4.1.jar:6.4.1] at org.elasticsearch.cli.Command.main(Command.java:90) ~[elasticsearch-cli-6.4.1.jar:6.4.1] at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:93) ~[elasticsearch-6.4.1.jar:6.4.1] at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:86) ~[elasticsearch-6.4.1.jar:6.4.1] Caused by: java.lang.RuntimeException: can not run elasticsearch as root at org.elasticsearch.bootstrap.Bootstrap.initializeNatives(Bootstrap.java:104) ~[elasticsearch-6.4.1.jar:6.4.1] at org.elasticsearch.bootstrap.Bootstrap.setup(Bootstrap.java:171) ~[elasticsearch-6.4.1.jar:6.4.1] at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:326) ~[elasticsearch-6.4.1.jar:6.4.1] at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:136) ~[elasticsearch-6.4.1.jar:6.4.1]
ElasticSearch 不能以root用户角色启动,因此需要将安装目录授权给其他用户,用其他用户来启动
启动成功后,验证,打开新的终端,执行如下命令:
[root@localhost ~]# curl 'http://localhost:9200/"name" : "O5BAVYE", "cluster_name" : "elasticsearch", "cluster_uuid" : "rw1yjlzkSgODXkUVgIxmxg", "version" : { "number" : "6.4.1", "build_flavor" : "default", "build_type" : "tar", "build_hash" : "e36acdb", "build_date" : "2018-09-13T22:18:07.696808Z", "build_snapshot" : false, "lucene_version" : "7.4.0", "minimum_wire_compatibility_version" : "5.6.0", "minimum_index_compatibility_version" : "5.0.0" }, "tagline" : "You Know, for Search" } [root@localhost ~]#
返回信息则表示安装成功!
4.安装Kibana
Sense 是一个 Kibana 应用 它提供交互式的控制台,通过你的浏览器直接向 Elasticsearch 提交请求。 这本书的在线版本包含有一个 View in Sense 的链接,里面有许多代码示例。当点击的时候,它会打开一个代码示例的Sense控制台。 你不必安装 Sense,但是它允许你在本地的 Elasticsearch 集群上测试示例代码,从而使本书更具有交互性。
下载kibana
Kibana是一个为 ElasticSearch 提供的数据分析的 Web 接口。可使用它对日志进行高效的搜索、可视化、分析等各种操作
https://artifacts.elastic.co/downloads/kibana/kibana-6.4.1-linux-x86_64.tar.gz
下载完成解压Kibana
[root@localhost ElasticSearch]# tar -zxvf kibana-6.4.1-linux-x86_64.tar.gz
修改 配置config目录下的kibana.yml 文件,配置elasticsearch地址和kibana地址信息
server.host: "192.168.92.50" # kibana 服务器地址 elasticsearch.url: "http://192.168.92.50:9200" # ES 地址
启动 Kibana
[root@localhost bin]# ./kibana
安装Kibana本机访问:http://localhost:5601/
选择Dev Tools菜单,即可实现可视化请求
5.安装LogStash
下载logStash
https://artifacts.elastic.co/downloads/logstash/logstash-7.0.1.tar.gz
下载完成解压后,config目录下配置日志收集日志配置文件 logstash.conf
# Sample Logstash configuration for creating a simple # Beats -> Logstash -> Elasticsearch pipeline. input { tcp { mode => "server" host => "192.168.92.50" port => 4560 codec => json_lines } } output { elasticsearch { hosts => "192.168.92.50:9200" index => "springboot-logstash-%{+YYYY.MM.dd}" } }
配置成功后启动logstatsh
[root@localhost bin]# ./logstash -f ../config/logstash.conf
ES 一些基础知识:
索引(名词):
如前所述,一个 索引 类似于传统关系数据库中的一个 数据库 ,是一个存储关系型文档的地方。 索引 (index) 的复数词为 indices 或 indexes 。
索引(动词):
索引一个文档 就是存储一个文档到一个 索引 (名词)中以便它可以被检索和查询到。这非常类似于 SQL 语句中的 INSERT 关键词,除了文档已存在时新文档会替换旧文档情况之外。
倒排索引:
关系型数据库通过增加一个 索引 比如一个 B树(B-tree)索引 到指定的列上,以便提升数据检索速度。Elasticsearch 和 Lucene 使用了一个叫做 倒排索引 的结构来达到相同的目的。
PUT /megacorp/employee/1 { "first_name" : "John", "last_name" : "Smith", "age" : 25, "about" : "I love to go rock climbing", "interests": [ "sports", "music" ] }
返回结果:
#! Deprecation: the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, you must manage this on the create index request or with an index template { "_index": "megacorp", "_type": "employee", "_id": "1", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "_seq_no": 0, "_primary_term": 1 }
路径 /megacorp/employee/1 包含了三部分的信息:
megacorp 索引名称
employee 类型名称
1 特定雇员的ID
放置第二个雇员信息:
{ "_index": "megacorp", "_type": "employee", "_id": "2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "_seq_no": 0, "_primary_term": 1 }
返回结果:
{ "_index": "megacorp", "_type": "employee", "_id": "2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "_seq_no": 0, "_primary_term": 1 }
放置第三个雇员信息
{ "_index": "megacorp", "_type": "employee", "_id": "3", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "_seq_no": 0, "_primary_term": 1 }
5.检索文档
检索到单个雇员的数据
GET /megacorp/employee/1
返回结果:
{ "_index": "megacorp", "_type": "employee", "_id": "1", "_version": 1, "found": true, "_source": { "first_name": "John", "last_name": "Smith", "age": 25, "about": "I love to go rock climbing", "interests": [ "sports", "music" ] } }
6.轻量搜索
一个 GET 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!
第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:
GET /megacorp/employee/_search
返回结果:
{ "took": 31, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 3, "max_score": 1, "hits": [ { "_index": "megacorp", "_type": "employee", "_id": "2", "_score": 1, "_source": { "first_name": "Jane", "last_name": "Smith", "age": 32, "about": "I like to collect rock albums", "interests": [ "music" ] } }, { "_index": "megacorp", "_type": "employee", "_id": "1", "_score": 1, "_source": { "first_name": "John", "last_name": "Smith", "age": 25, "about": "I love to go rock climbing", "interests": [ "sports", "music" ] } }, { "_index": "megacorp", "_type": "employee", "_id": "3", "_score": 1, "_source": { "first_name": "Douglas", "last_name": "Fir", "age": 35, "about": "I like to build cabinets", "interests": [ "forestry" ] } } ] } }
通过姓名模糊匹配来获得结果
GET /megacorp/employee/_search"htmlcode">
{ "took": 414, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 0.2876821, "hits": [ { "_index": "megacorp", "_type": "employee", "_id": "2", "_score": 0.2876821, "_source": { "first_name": "Jane", "last_name": "Smith", "age": 32, "about": "I like to collect rock albums", "interests": [ "music" ] } }, { "_index": "megacorp", "_type": "employee", "_id": "1", "_score": 0.2876821, "_source": { "first_name": "John", "last_name": "Smith", "age": 25, "about": "I love to go rock climbing", "interests": [ "sports", "music" ] } } ] } }
7.使用查询表达式搜索
领域特定语言 (DSL), 指定了使用一个 JSON 请求
GET /megacorp/employee/_search { "query" : { "match" : { "last_name" : "Smith" } } }
返回结果:
{ "took": 7, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 0.2876821, "hits": [ { "_index": "megacorp", "_type": "employee", "_id": "2", "_score": 0.2876821, "_source": { "first_name": "Jane", "last_name": "Smith", "age": 32, "about": "I like to collect rock albums", "interests": [ "music" ] } }, { "_index": "megacorp", "_type": "employee", "_id": "1", "_score": 0.2876821, "_source": { "first_name": "John", "last_name": "Smith", "age": 25, "about": "I love to go rock climbing", "interests": [ "sports", "music" ] } } ] } }
8.更复杂的搜索
搜索姓氏为 Smith 的雇员,但这次我们只需要年龄大于 30 的,使用过滤器 filter ,它支持高效地执行一个结构化查询
GET /megacorp/employee/_search { "query" : { "bool": { "must": { "match" : { "last_name" : "smith" } }, "filter": { "range" : { "age" : { "gt" : 30 } } } } } }
其中:range 过滤器 , 它能找到年龄大于 30 的文档,其中 gt 表示_大于(_great than)
返回结果:
{ "took": 44, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 0.2876821, "hits": [ { "_index": "megacorp", "_type": "employee", "_id": "2", "_score": 0.2876821, "_source": { "first_name": "Jane", "last_name": "Smith", "age": 32, "about": "I like to collect rock albums", "interests": [ "music" ] } } ] } }
9.全文搜索
搜索下所有喜欢攀岩(rock climbing)的雇员
GET /megacorp/employee/_search { "query" : { "match" : { "about" : "rock climbing" } } }
返回结果:
{ "took": 17, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 0.5753642, "hits": [ { "_index": "megacorp", "_type": "employee", "_id": "1", "_score": 0.5753642, "_source": { "first_name": "John", "last_name": "Smith", "age": 25, "about": "I love to go rock climbing", "interests": [ "sports", "music" ] } }, { "_index": "megacorp", "_type": "employee", "_id": "2", "_score": 0.2876821, "_source": { "first_name": "Jane", "last_name": "Smith", "age": 32, "about": "I like to collect rock albums", "interests": [ "music" ] } } ] } }
10.全文搜索
找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者短语 。 比如, 我们想执行这样一个查询,仅匹配同时包含 “rock” 和 “climbing” ,并且 二者以短语 “rock climbing” 的形式紧挨着的雇员记录。
GET /megacorp/employee/_search { "query" : { "match_phrase" : { "about" : "rock climbing" } } }
返回结果:
{ "took": 142, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 0.5753642, "hits": [ { "_index": "megacorp", "_type": "employee", "_id": "1", "_score": 0.5753642, "_source": { "first_name": "John", "last_name": "Smith", "age": 25, "about": "I love to go rock climbing", "interests": [ "sports", "music" ] } } ] } }
11.高亮搜索
许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。
增加参数: highlight
GET /megacorp/employee/_search { "query" : { "match_phrase" : { "about" : "rock climbing" } }, "highlight": { "fields" : { "about" : {} } } }
返回结果:
{ "took": 250, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 0.5753642, "hits": [ { "_index": "megacorp", "_type": "employee", "_id": "1", "_score": 0.5753642, "_source": { "first_name": "John", "last_name": "Smith", "age": 25, "about": "I love to go rock climbing", "interests": [ "sports", "music" ] }, "highlight": { "about": [ "I love to go <em>rock</em> <em>climbing</em>" ] } } ] } }
其中高亮模块为highlight属性
12.分析
Elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 SQL 中的 GROUP BY 类似但更强大。
举个例子,挖掘出雇员中最受欢迎的兴趣爱好:
GET /megacorp/employee/_search { "aggs": { "all_interests": { "terms": { "field": "interests" } } } }
返回结果:
{ ... "hits": { ... }, "aggregations": { "all_interests": { "buckets": [ { "key": "music", "doc_count": 2 }, { "key": "forestry", "doc_count": 1 }, { "key": "sports", "doc_count": 1 } ] } } }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]